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Scattering by a Two Dimensional Groove in a Ground Plane 

Kasra Barkeshli and John L. Volakis 

Higher order boundary conditions involve derivatives of the fields beyond the first 

and were recently shown to be more effective than traditional first order conditions in 

modeling dielectric coatings and layers. In this report an application of a third order 

generalized boundary condition to scattering by a filled rectangular groove is 

presented. Deficiencies of such higher order boundary conditions are addressed and 

a correction is proposed for the present case. As part of the process of examining and 

improving the accuracy of the proposed generalized boundary conditions, an exact 

solution is developed and a comparison is provided with a solution based on the 

standard impedance boundary condition. 



1. INTRODUCTION 

Traditionally, the standard impedance boundary condition (SIBC) [l] has been 

employed to simulate thin material layers on perfectly conducting objects. As is well 

known, however, the SlBC provides limited accuracy and is particularly applicable to 

lossy and/or high contrast dielectrics. This is primarily because it cannot model the 

polarization current components that are normal to the dielectric layer. As a result, the 

SlBC has been found to be best suited for near normal incidence, unless the coating's 

material properties are such that limit penetration within the material. 

The SlBC is a first order condition in that its definition involves a single normal 

derivative of the component of the field normal to the modeled surface. Recently[2], 

however, a class of boundary conditions were proposed whose major characteristic is 

the inclusion of higher order derivatives (along the direction of the surface normal) of 

the normal field components. These were originally introduced by Karp and Karal [3] 

and Wienstein [4] to simulate surface wave effects, but have been found to be rather 

general in nature. In fact, they can be employed to simulate any material profile with a 

suitable choice of the (constant) derivative coefficients. Appropriately, they are 

referred to a generalized impedance boundary conditions (GIBC) and can be written 

either in terms of tanaentlal or normal derivatives provided a duality condition is 

satisfied [2]. Unlike the SlBC they offer several degrees of freedom and allow an 

accurate prediction of the surface reflected fields at oblique incidences. This was 

demonstrated in [2] for the infinite planar surface formed by a uniform dielectric layer 

on a ground plane. It was found that the maximum coating or layer thickness that can 
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be simulated accurately with a given GlBC was analogous to the highest order 

derivative included in the condition. 

The GIBCs offer several advantages in both asymptotic and numerical 

analysis of electromagnetic problems. For example, in the case of asymptotic/hig h 

frequency analysis, they allow an accurate replacement of a coating on a layer with a 

sheet boundary condition amenable to a Wiener-Hopf analysis [5,6] or some other 

function theoretic approach [7]. In numerical analysis, the profile of a coating can be 

replaced by a simple boundary condition on the surface of the coating. This eliminates 

a need for introducing unknown polarization currents within the coating or material 

layer and thus leading to a more efficient solution. 

In this report we examine a numerical application of a third order GlBC for 

scattering by a material filled groove in a ground plane. Since the GlBCs were derived 

for a coating without terminations, of particular interest in this study is the examination 

of their accuracy near those terminations. It is, unfortunately, found that they must be 

supplemented by more accurate conditions in the vicinity of material discontinuities. A 

procedure is, therefore, introduced that combines the exact and GlBC formulations. 

Since the exact solution is required for comparison purposes and in developing the 

hybrid formulation, it is presented in the first part of the report. This is followed by a 

discussion on the limitations of a formulation based on the SIBC. The integral 

equation based on a third order GlBC is presented next. This is solved by the 

conjugate gradient FFT method having an O(N) memory requirement. In contrast, the 

exact integral equation is not amenable to such a solution and must be solved by a 

matrix inversion approach having an O(N2 ) memory requirement. The hybrid 
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formulation is presented last and results are given which show the validity of the 

procedure as well as its limitations. 

II. EXACT SOLUTION 

A. Formulation 

Consider the H, polarized wave 

incident on the two dimensional cavity as shown in Fig. 1 and we are interested in 

computing the sattered field. The exact formulation for a slit in a ground plane has 

been developed in [8] and a similar formulation can be followed in the case of the 

groove. Below we develop an exact integral equation based on this procedure. 

In accordance with the equivalence principle the cavity may be closed by a 

perfect conductor and the equivalent magnetic current 

- 
M = E x f i  or M,=E, 

may then be introduced on the cavity's top surface, where Ex is the x component of the 

total electric field at the aperture. Referring to Fig. 2 and applying continuity of the 

tangential electric field across the aperture, we have 
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- 
E X A  = E X  A' 

(2) 
2 M,=- z A MI, 

M', = - M, 

In addition, continuity of the total tangential magnetic field across the aperture gives 

(3) 
i b b b + 

Ht + Hy (M,) = H, (M,) = H, (-M,) = - H, (M,) ; y = 0 

b in which H, denotes the tangential magnetic field at the cavity's surface in region b and 

likewise Hto is the tangential field at y = 0'. 

From (3) an integral equation can be obtained after substitution of the 

appropriate field expressions. On the aperture (y=O), these are 

j k ( x - w ) a o S  Q0 
H, i =2e 2 

W 

H: (M,) = - jkoY, 2 M, (x') G(x, x') dx' 
0 

W 
@ - - kOyO !MI (x') H, (ko I x - x'l ) dx' - 2  

0 

(4) 

(5) 

in which Yo = l/Z, is the free space admittance and is the free space wavenumber 

and a factor of two has been introduced due to image theory. 

b 
To find an expression for H, (M,) we require the cavity Green's function. To 

find it we proceed as follows: Set 
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c 

M = 2 M', (6) 

F = Y ?  (7) 
- 

where Y is the scalar wave potential satisfying the two dimensional wave equation in 

the source free region 

[<+ ax <+ ay <)Y = 0 in region b except y = 0. 

subject to the appropriate boundary conditions. Also 

- A  a a E = - V X F X - Y  - p - ~  
aY ax 

- 

- 
H = - jk, Y, F 

in which Y, = Yo f i  , \ = ko Jm and (e, ,  b) are the relative constitutive 

parameters of the material filling the cavity. The scalar wave potential Y can be 

determined by recalling the boundary conditions for the tangential electric field on the 

wails of the cavity. These are 

Choosing, 
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satisfies (1 2) and (1 3). The constants A, are then determined to satisfy (1 1 ). That is 

yielding 

= - ZAp $sin (kpt) cos W= PTTX - M,. 

P O  

and integrating, we have q*x Multiplying both sides by cos 7 

W W 

in which 

qm cos - dx = - [ M,(x) cos $ dx P m  Apkp sin kp' [ cos 7 X 
- 
P=O 

I 

0 

PXX M, (x) COS 7 dx i &P A =  
P wk, sin k,t 

0 

1 

% = {  2 
p = o  

P > O  

The ref0 re 

I 

0 
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6. Moment Method Solui on 

Substituting (4), (5) and (17) into (3) yields the integral equation 

W W 
pxx' 

cos I M, (x') cos w dx' (2) kbYb 
W 

k,Y, I M, (x') H, (k, I x - x'l) dx' - j 7 
0 

fi k, tan (kJ) 
f@ 

2 
0 

To discretize the above integral equation we expand the magnetuc current in terms of 

pulses basis function as 

and by substitution back into (18), we obtain 

A X,+ - 
2 

A 
%+ ?- 

xn- 2 

pxx' 
cos 2 cn j c o s  w d x' 

n=l 

kOY0 j kbYb 
- 2 C, Hd;l (k,l x - x'l) dx' - 7 2 

A 3l-T A n=l 

7 



Employing point matching, this can now be written as 

and 

, m = 1, 2, 3, ... The elements of the square admittance matrix can be mA with x, =- 
2 

further simplified to 

with 

and 
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PXA sinc - . kp tan (kpt) W 2w Y,, = -- 2w 
PI0 

in which ~ 0 . 5 7 7 2  is the Euler constant. 

C. TE Scattering from a Narrow Groove 

In this section we examine the exact formulation and compare it to that 

obtained via application of the standard impedance boundary condition for a narrow 

groove. By rewriting the integral equation (18) as 

W W 

M, (XI) dx' (2) 1 
jwZ, tan \t k,y, 1 M, (XI) H, (k, I x - x'l ) dx' + 2 

0 0 

and setting q b  = jZ, tan (kbt) we obtain 

W ik(x-T)-%, W 

M, (x') dx' = 2e (27) 
(2) 1 "i M, (x') H, (k, I x - x'I ) dx' + - 2 q b  

0 0 

where we have included only the dominant mode (p=O) in the representation of the 

cavitiy's Green's function. If we further assume a constant tangential electric field 

variation (M, (x) - constant) over the aperture, (27) reduces to 

W W ik (x - - 1 01s Q0 (2) 1 2 kOyO I M, (XI) H, (k, I x - x'l ) dx' + - M, (x) = 2e 
2 'b 

0 
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which is the integral equation resulting from an application of the standard impedance 

boundary condition (SIBC). 

The approximations required to go from (26) to (28) are not obviously 

expected to hold unless the groove is small in depth and width, say b w  10.6 and 

kJ 50.6. Consequently one does not expect the SlBC to provide a good simulation of 

the cavity scattering, particularly near grazing incidences where M, (x) in not symmetric 

and may have rapid spatial variation. In fact, it may also be observed that the SlBC 

integral equation , at best, yields the average of the actual equivalent current 

.distribution on the surface of the crack. This is clearly illustrated in Fig. 3 where the 

currents and echowidth predicted via (28) and the exact integral equation (20) are 

compared. The result shown in Fig. 3 is a typical situation and it is not surprising that 

the backscatter echowidth predicted by the SlBC formulation is in substantial error at 

oblique incidences. 

111. FORMULATION WITH GENERALIZED IMPEDANCE BOUNDARY 

CONDITIONS 

It is desirable to work with a formulation (or an integral equation) that is 

amenable to a conjugate gradient FFT (CGFFT) implementation. The CGFFT has an 

O(Nj’memory requirement and can thus be suitable for treating large size grooves or 

cavities, particularly when applied to three dimensional geometries. Unfortunately, the 

exact formulation, in addition to being restricted to rectangular grooves and cracks, is 
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not suitable for a CGFFT implementation. On the other hand the integral equation (20) 

resulting from an application of the SIBC, a first order condition, although amenable to 

a CGFFT is not of acceptable accuracy. Recently, however, higher order impedance 

boundary conditions involving field derivatives beyond the first have been found to 

provide a substantially better simulation for fairly thick dielectric coatings. These are 

referred to as generalized impedance boundary conditions (GIBCs) and take the form 

where a, and a', are constants specific to the surface, layer or coating being 

modeled. For M = l ,  they reduce to the SIBC provided we set 

*ON a', 
'b 1 

5 = q, Zo = j -tan ('6f) = a= 7 

where N = Jm. A third order GlBC corresponds to M=3. In that case, an accurate 

simulation of the reflection coefficient for a metal-backed uniform dielectric layer can 

be obtained by choosing 



I 

1 

1 

1 + tan (ktN) tan (K) “ I  

tan (ktN) -tan 2N 

and 

1 + COS (ktN) Cot (-) 
a’o 2N “ 1  

2N “ 1  kt 
2N 

ag2 = 1 + cot (ktN) cot (-) + kt (N - cot (MN) - cot (2” 

1 + Cot (ktN) Cot (G) “ 1  a’3 = -i k t b  

The above conditions are applied on the surface of the coating and predict the proper 

surface wave modes. However, they were derived for an infinite layer without the 

presence of any terminations. Therefore, when applied to the case of a groove having 

abrupt material terminations at x=O and x=w, we expect that the simulation provided by 

(30) in conjunction with (32) and (33) will not be as accurate. As a result, the GlBC 

must be supplemented by additional (more accurate) conditions at the terminations of 

the coating or in this case the groove. At this point, no standard methodology has 
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been devised for imposing these supplementary conditions, but in either case such 

conditions will be specific to the geometrical and material properties of the termination. 

Before, however, we examine the issue of supplementary conditions, let us first 

proceed with a direct implementation of the third order GlBC noted above. It will be 

seen that comparison of the results obtained via a direct application of this GlBC will 

guide us on how these can be supplemented at the terminations. 

For H, polarization, H, =0, and thus the relevant GlBC is (30a). Expanding this 

we have 

a2 + 

To introduce the equivalent magnetic current M, = E, in (34), we note that 

v. L o  
and thus 

Substituting (36) into (34) now yields 

1 3  
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In deriving (37) we also employed the wave equation 

and have set 

Ey=Ey+Eyr+E; i =-2Z,cos@,H, i s  + s  
where 

(39) 

W 

(2) 
(40) 

i Ey'= - - 2M2 (XI) H, (k, I x - x'I ) dx' 
4 
0 

is the y component of the scattered field in which the factor of 2 is due to image theory. 

Integrating both sides of (37) with respect to x eliminates one of the 

derivatives. Doing so, we obtain 

W 
[l+q[ a 2 1  +22)]7! a 4 7 0  M,(x')H, (2) (k,Ix-x'l)dx' + 

0 

1 4  
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and we note that for a2 = a, = 0 (41) reduces to the SlBC integral equation (28) 

provided the identification noted in (31) is also employed. 

The integral equation (41) derived by imposing the GlBC lends itself to a 

solution via the CGFFT method. Defining the fourier transform pair 

0 

6 (k,) = f {G (XI} = [ G(x) ejkxx dx 
J 

-0  

0 

-1 - 
G(x) = f { G (k,)} = [ 6 (x) ikxx d h  

J 
-0 

we have 

(fi = j) and by recalling the convolution theorem 

since M, (x) is zero outside 0 e x < w. Also, in the transform domain 

and (41) may thus be written as 

1 5  
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A CGFFT implementation of (46) is a straightforward task and typical results as 

computed by (46) are shown in fig. 4. As expected, the third order GlBC applied to the 

groove, predicts reasonably well the exact magnitude and phase of the current 

distribution when away from the termination of the groove. The accuracy of this 

prediction, of course, depends on the depth of the groove, t, and the material 

properties of the dielectric filling. Our preliminary investigation indicates that for 

lossless dielectrics, the above third order GlBC provides a reasonable prediction of the 

current distribution away from the groove terminations for kt I 1. However, for lossy 

dielectrics substantially deeper grooves can be simulated. 

Next, we consider a hybrid GIBC-exact formulation to alleviate the difficulties 

of the GlBC in predicting the currents near the groove terminations. 

IV. HYBRID GIBC-EXACT FORMULATION 

The GIBC formulation in conjunction with the CGFFT solution method offers 

the substantial advantage of having an O(N) menory requirement. However, as seen 

in Fig. 4, the current distribution predicted by the third order GlBC is not of acceptable 
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accuracy when within 0.2 wavelengths of the groove terminations or so. To alleviate 

this difficulty, one approach is to feed the currents predicted by the GlBC integral 

equation (41) away from the edges into the exact integral equation (20). The last can 

then be solved for the remaining currents in the vicinity of the groove terminations. 

This only requires the inversion of a small matrix thus alleviating the usual difficulties 

with storage. 

G 
Suppose now that M, (x) denotes the current computed via the GlBC integral 

equation given in (41) and likewise M:(x) denotes the current computed via the exact 

G 
integral equation. Employing M, (x) in place of M, (x) in (20) for xA < x < w - xA yields 

f 'A W I 
!$!!L[ p: (x') H, (2) (k, Ix - x'l) dx' + M: (x') H, (2) (k, Ix - x'l) dx' 

w-xA 

7 
(x') cos 7 dx' } 

1 

W 

pxx' 
kbYb &P 

w - XA 
-' 7 2 k, tan (kpt) c o  p=o 

w -  XA 

(2) jk (x - E) as+o 
2 - M: (x') H, (k, I x - x'l ) dx' 2 = 2 e  

w -  x. 
pxx' j% W 'b &P cos w pxx I M: (x') COS y d x '  . 

+- f: k, tan (5') 
xA 

P O  

1 7  
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Assuming that M: (x) has already been determined via a CGFFT solution of (46), the 

entire right hand side of (47) is known. Thus for xA 5 0.25 a 4x4 or a 6x6 square 

impedance matrix is required for the solution of M: (x). In general, continuity of the 

G 
current density must also be imposed at the transition regions between M, (x) and M: (x). 

The results shown in figure 5 clearly show that the proposed hybrid 

formulation can provide an accurate prediction of the scattering by a groove. The 

bistatic and backscatter echowidths presented in the course of the above 

developments have been summarized in Fig. 6. Other examples for the current 

distributions and corresponding echowidths are given in figures 7 - 11. In these 

figures the following labeling has been employed 

EXACT: 

SIBC: 

G IBC-3: 

Hybrid-1 : 

Hybrid-3: 

Data from a numerical implementation of the exact integral 

equation (20). 

Data from a CGFFT implementation of (46) with a3 = a2 = 0 and in 

conjunction with (31) 

condition. 

Data from a CGFFT implementation of the integral equation (46) 

resulting from the third order generalized impedance boundary 

condition. 

Data from the hybrid SIBC-exact formulation. 

Data from the hybrid GIBC-exact formulation employing the 3rd 

order GIBC. 
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V. CONCLUDING REMARKS 

An application of a third order generalized boundary condition (GIBC) to 

scattering by a two dimensional dielectrically filled cavity was considered. In the 

process of examining the accuracy of the GIBC, an exact solution was developed and 

a solution based on the standard impedance boundary condition (SIBC) was 

examined. An analytical comparison of the integral equation based on the SlBC with 

the exact, revealed the well known limitations of the SlBC formulation. It was 

concluded that the SlBC integral equation will, at most, generate an average of the 

actual current distribution provided the groove is very shallow. 

The GlBC integral equation was found easier to implement. Furthermore, 

unlike the exact integral equation, it was amenable to a conjugate gradient FFT 

solution and is, thus, attractive for three dimensional implementations. It was found to 

predict the correct current behavior reasonably well away from the terminations of the 

groove particularly for lossy dielectric fillings. However, the inadequacy of the GlBC 

formulation near the groove terminations proved problematic. The GlBC conditions 

needed supplementation in these regions and several approaches were examined to 

correct their deficiency. Our initial hope was that the addition of filamentary currents at 

the edges would provide the required correction as was already done in the case of an 

isolated thin dielectric layer. This approach, however, was not found suitable for the 

subject geometry. Instead, the incorrect currents near the groove terminations were 

replaced with those computed via the exact integral equations. Specifically, the 

currents computed via the GlBC formulation away from the groove termination were 

1 9  



I 
I employed in the exact integral equation to generate a small 4x4 or a 6x6 matrix for the 
I 

currents in the vicinity of the terminations. This was referred to as a hybrid exact-GIBC 

approach and was found to provide a reasonably good simulation of lossy dielectric 

fillings at all angles of incidence and observation. In case of lossless and low contrast 

dielectrics, the simulation was adequate for groove depths up to 3/20 of a wavelength. 

j 
I 
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Fig. 1. Geometry of the rectangular groove in a ground plane 

Equivalence Principle : 

conducting 

- 
M Mz= E, 

Image theory : 

QpH, i 

- Mz 

Fig. 2. Illustration of the application of equivalence and 
image theory. 
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